Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 968
Filtrar
1.
Science ; 383(6688): 1252-1259, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484078

RESUMO

Overgeneralization of fear to harmless situations is a core feature of anxiety disorders resulting from acute stress, yet the mechanisms by which fear becomes generalized are poorly understood. In this study, we show that generalized fear in mice results from a transmitter switch from glutamate to γ-aminobutyric acid (GABA) in serotonergic neurons of the lateral wings of the dorsal raphe. Similar change in transmitter identity was found in the postmortem brains of individuals with posttraumatic stress disorder (PTSD). Overriding the transmitter switch in mice prevented the acquisition of generalized fear. Corticosterone release and activation of glucocorticoid receptors mediated the switch, and prompt antidepressant treatment blocked the cotransmitter switch and generalized fear. Our results provide important insight into the mechanisms involved in fear generalization.


Assuntos
Encéfalo , Medo , Generalização da Resposta , Ácido Glutâmico , Transtornos de Estresse Pós-Traumáticos , Estresse Psicológico , Ácido gama-Aminobutírico , Animais , Camundongos , Encéfalo/metabolismo , Medo/fisiologia , Ácido gama-Aminobutírico/metabolismo , Neurônios/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/metabolismo , Ácido Glutâmico/metabolismo , Corticosterona/metabolismo , Receptores de Glucocorticoides/metabolismo , Humanos
2.
Behav Brain Res ; 465: 114960, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38494129

RESUMO

Cognitive behavioral therapy, rooted in exposure therapy, is currently the primary approach employed in the treatment of anxiety-related conditions, including post-traumatic stress disorder (PTSD). In laboratory settings, fear extinction in animals is a commonly employed technique to investigate exposure therapy; however, the precise mechanisms underlying fear extinction remain elusive. Casein kinase 2 (CK2), which regulates neuroplasticity via phosphorylation of its substrates, has a significant influence in various neurological disorders, such as Alzheimer's disease and Parkinson's disease, as well as in the process of learning and memory. In this study, we adopted a classical Pavlovian fear conditioning model to investigate the involvement of CK2 in remote fear memory extinction and its underlying mechanisms. The results indicated that the activity of CK2 in the medial prefrontal cortex (mPFC) of mice was significantly upregulated after extinction training of remote cued fear memory. Notably, administration of the CK2 inhibitor CX-4945 prior to extinction training facilitated the extinction of remote fear memory. In addition, CX-4945 significantly upregulated the expression of p-ERK1/2 and p-CREB in the mPFC. Our results suggest that CK2 negatively regulates remote fear memory extinction, at least in part, by inhibiting the ERK-CREB pathway. These findings contribute to our understanding of the underlying mechanisms of remote cued fear extinction, thereby offering a theoretical foundation and identifying potential targets for the intervention and treatment of PTSD.


Assuntos
Medo , Transtornos de Estresse Pós-Traumáticos , Animais , Camundongos , Caseína Quinase II/metabolismo , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo
3.
Neuroscience ; 540: 87-102, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38220126

RESUMO

While the majority of the population is ever exposed to a traumatic event during their lifetime, only a fraction develops posttraumatic stress disorder (PTSD). Disrupted trauma memory processing has been proposed as a core factor underlying PTSD symptomatology. We used transgenic Targeted-Recombination-in-Active-Populations (TRAP) mice to investigate potential alterations in trauma-related hippocampal memory engrams associated with the development of PTSD-like symptomatology. Mice were exposed to a stress-enhanced fear learning paradigm, in which prior exposure to a stressor affects the learning of a subsequent fearful event (contextual fear conditioning using foot shocks), during which neuronal activity was labeled. One week later, mice were behaviorally phenotyped to identify mice resilient and susceptible to developing PTSD-like symptomatology. Three weeks post-learning, mice were re-exposed to the conditioning context to induce remote fear memory recall, and associated hippocampal neuronal activity was assessed. While no differences in the size of the hippocampal neuronal ensemble activated during fear learning were observed between groups, susceptible mice displayed a smaller ensemble activated upon remote fear memory recall in the ventral CA1, higher regional hippocampal parvalbuminneuronal density and a relatively lower activity of parvalbumininterneurons upon recall. Investigation of potential epigenetic regulators of the engram revealed rather generic (rather than engram-specific) differences between groups, with susceptible mice displaying lower hippocampal histone deacetylase 2 expression, and higher methylation and hydroxymethylation levels. These finding implicate variation in epigenetic regulation within the hippocampus, as well as reduced regional hippocampal activity during remote fear memory recall in interindividual differences in susceptibility to traumatic stress.


Assuntos
Epigênese Genética , Transtornos de Estresse Pós-Traumáticos , Camundongos , Animais , Memória/fisiologia , Hipocampo/metabolismo , Memória de Longo Prazo/fisiologia , Rememoração Mental , Suscetibilidade a Doenças/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 133-144, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382600

RESUMO

Current pharmacological treatments against post-traumatic stress disorder (PTSD) lack adequate efficacy. As a result, intense research has focused on identifying other molecular pathways mediating the pathogenesis of this condition. One such pathway is neuroinflammation, which has demonstrated a role in PTSD pathogenesis by causing synaptic dysfunction, neuronal death, and functional impairment in the hippocampus. Phosphodiesterase (PDE) inhibitors (PDEIs) have emerged as promising therapeutic agents against neuroinflammation in other neurological conditions. Furthermore, PDEIs have shown some promise in animal models of PTSD. However, the current model of PTSD pathogenesis, which is based on dysregulated fear learning, implies that PDE inhibition in neurons should enhance the acquisition of fear memory from the traumatic event. As a result, we hypothesized that PDEIs may improve PTSD symptoms through inhibiting neuroinflammation rather than long-term potentiation-related mechanisms. To this end, we tested the therapeutic efficacy of cilostazol, a selective inhibitor of PDE3, on PTSD-related anxiety symptoms in the underwater trauma model of PTSD. PDE3 is expressed much more richly in microglia and astrocytes compared to neurons in the murine brain. Furthermore, we used hippocampal indolamine 2,3-dioxygenase 1 (IDO) expression and interleukin 1 beta (IL-1ß) concentration as indicators of neuroinflammation. We observed that cilostazol pretreatment prevented the development of anxiety symptoms and the increase in hippocampal IDO and IL-1ß following PTSD induction. As a result, PDE3 inhibition ameliorated the neuroinflammatory processes involved in the development of PTSD symptoms. Therefore, cilostazol and other PDEIs may be promising candidates for further investigation as pharmacological therapies against PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Camundongos , Animais , Cilostazol/farmacologia , Cilostazol/uso terapêutico , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/prevenção & controle , Transtornos de Estresse Pós-Traumáticos/metabolismo , Doenças Neuroinflamatórias , Ansiedade/tratamento farmacológico , Ansiedade/prevenção & controle , Hipocampo/metabolismo
5.
Behav Brain Res ; 459: 114792, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38048914

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) is associated with traumatic stress experiences. This condition can be accompanied by learning and cognitive deficits. Studies have demonstrated that ketamine can rapidly and significantly alleviate symptoms in patients with chronic PTSD. Nonetheless, the effects of ketamine on neurocognitive impairment and its mechanism of action in PTSD remain unclear. METHODS: In this study, different concentrations of ketamine (5, 10, 15, and 20 mg/kg, i.p.) were evaluated in rat models of single prolonged stress and electrophonic shock (SPS&S). Expression levels of brain-derived neurotrophic factor (BDNF) and post-synaptic density-95 (PSD-95) in the hippocampus (HIP) and amygdala (AMG) were determined by Western blot analysis and immunohistochemistry. RESULTS: The data showed that rats subjected to SPS&S exhibited significant PTSD-like cognitive impairment. The effect of ketamine on SPS&S-induced neurocognitive function showed a U-shaped dose effect in rats. A single administration of ketamine at a dosage of 10-15 mg/kg resulted in significant changes in behavioral outcomes. These manifestations of improvement in cognitive function and molecular changes were reversed at high doses (15-20 mg/kg). CONCLUSION: Overall, ketamine reversed SPS&S-induced fear and spatial memory impairment and the down-regulation of BDNF and BDNF-related PSD-95 signaling in the HIP and AMG. A dose equal to 15 mg/kg rapidly reversed the behavioral and molecular changes and promoted the amelioration of cognitive dysfunction. The enhanced association of BDNF signaling with PSD-95 effects could be involved in the therapeutic efficiency of ketamine for PTSD.


Assuntos
Disfunção Cognitiva , Ketamina , Transtornos de Estresse Pós-Traumáticos , Humanos , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos de Estresse Pós-Traumáticos/complicações , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Ketamina/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Tonsila do Cerebelo/metabolismo , Cognição , Transdução de Sinais/fisiologia , Medo , Modelos Animais de Doenças
7.
Transl Psychiatry ; 13(1): 354, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980332

RESUMO

Patients exposed to trauma often experience high rates of adverse post-traumatic neuropsychiatric sequelae (APNS). The biological mechanisms promoting APNS are currently unknown, but the microbiota-gut-brain axis offers an avenue to understanding mechanisms as well as possibilities for intervention. Microbiome composition after trauma exposure has been poorly examined regarding neuropsychiatric outcomes. We aimed to determine whether the gut microbiomes of trauma-exposed emergency department patients who develop APNS have dysfunctional gut microbiome profiles and discover potential associated mechanisms. We performed metagenomic analysis on stool samples (n = 51) from a subset of adults enrolled in the Advancing Understanding of RecOvery afteR traumA (AURORA) study. Two-, eight- and twelve-week post-trauma outcomes for post-traumatic stress disorder (PTSD) (PTSD checklist for DSM-5), normalized depression scores (PROMIS Depression Short Form 8b) and somatic symptom counts were collected. Generalized linear models were created for each outcome using microbial abundances and relevant demographics. Mixed-effect random forest machine learning models were used to identify associations between APNS outcomes and microbial features and encoded metabolic pathways from stool metagenomics. Microbial species, including Flavonifractor plautii, Ruminococcus gnavus and, Bifidobacterium species, which are prevalent commensal gut microbes, were found to be important in predicting worse APNS outcomes from microbial abundance data. Notably, through APNS outcome modeling using microbial metabolic pathways, worse APNS outcomes were highly predicted by decreased L-arginine related pathway genes and increased citrulline and ornithine pathways. Common commensal microbial species are enriched in individuals who develop APNS. More notably, we identified a biological mechanism through which the gut microbiome reduces global arginine bioavailability, a metabolic change that has also been demonstrated in the plasma of patients with PTSD.


Assuntos
Microbioma Gastrointestinal , Microbiota , Transtornos de Estresse Pós-Traumáticos , Adulto , Humanos , Transtornos de Estresse Pós-Traumáticos/metabolismo , Fezes/microbiologia , Disponibilidade Biológica
8.
Chin J Physiol ; 66(5): 326-334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929343

RESUMO

Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder, and there is an association between it and the development of cardiovascular disease. The aim of this study was to explore whether there is a glutamatergic pathway connecting the medial habenula (MHb) with the rostral ventrolateral medulla (RVLM) that is involved in the regulation of cardiovascular function in a rat model of PTSD. Vesicular glutamate transporter 2 (VGLUT2)-positive neurons in the MHb region were retrogradely labeled with FluoroGold (FG) by the double-labeling technique of VGLUT2 immunofluorescence and FG retrograde tracing. Rats belonging to the PTSD model group were microinjected with artificial cerebrospinal fluid (ACSF) or kynurenic acid (KYN; a nonselective glutamate receptor blocker) into their RVLM. Subsequently, with electrical stimulation of MHb, the discharge frequency of the RVLM neurons, heart rate, and blood pressure were found to be significantly increased after microinjection of ACSF using an in vivo multichannel synchronous recording technology; however, this effect was inhibited by injection of KYN. The expression of N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits was significantly increased in RVLM of PTSD model rats analyzed by the Western blotting technique. These findings suggest that there may be a glutamatergic pathway connection between MHb and RVLM and that this pathway may be involved in the regulation of cardiovascular function in the PTSD model rats, by acting on NMDA and AMPA receptors in the RVLM.


Assuntos
Habenula , Transtornos de Estresse Pós-Traumáticos , Humanos , Ratos , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Habenula/metabolismo , Bulbo/metabolismo , Pressão Sanguínea , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia
9.
Transl Psychiatry ; 13(1): 357, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993441

RESUMO

Post-traumatic stress disorder (PTSD) is a mental disorder that develops after exposure to a traumatic event. Owing to the relatively low rates of response and remission with selective serotonin reuptake inhibitors as the primary treatment for PTSD, there is a recognized need for alternative strategies to effectively address the symptoms of PTSD. Dysregulation of glutamatergic neurotransmission plays a critical role in various disorders, including anxiety, depression, PTSD, and Alzheimer's disease. Therefore, the regulation of glutamate levels holds great promise as a therapeutic target for the treatment of mental disorders. Electroacupuncture (EA) has become increasingly popular as a complementary and alternative medicine approach. It maintains the homeostasis of central nervous system (CNS) function and alleviates symptoms associated with anxiety, depression, and insomnia. This study investigated the effects of EA at the GV29 (Yintang) acupoint three times per week for 2 weeks in an animal model of PTSD. PTSD was induced using single prolonged stress/shock (SPSS) in mice, that is, SPS with additional foot shock stimulation. EA treatment significantly reduced PTSD-like behavior and effectively regulated serum corticosterone and serotonin levels in the PTSD model. Additionally, EA treatment decreased glutamate levels and glutamate neurotransmission-related proteins (pNR1 and NR2B) in the hippocampus of a PTSD model. In addition, neuronal activity and the number of Golgi-impregnated dendritic spines were significantly lower in the EA treatment group than in the SPSS group. Notably, EA treatment effectively reduced glutamate-induced excitotoxicity (caspase-3, Bax, and pJNK). These findings suggest that EA treatment at the GV29 acupoint holds promise as a potential therapeutic approach for PTSD, possibly through the regulation of NR2B receptor-mediated glutamate neurotransmission to reduce PTSD-like behaviors.


Assuntos
Eletroacupuntura , Transtornos de Estresse Pós-Traumáticos , Humanos , Camundongos , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Transmissão Sináptica
10.
Mol Psychiatry ; 28(9): 3851-3855, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37845495

RESUMO

Life threatening trauma and the development of PTSD during childhood, may each associate with transcriptional perturbation of immune cell glucocorticoid reactivity, yet their separable longer term contributions are less clear. The current study compared resting mononuclear cell gene expression levels of the nuclear receptor, subfamily 3, member 1 (NR3C1) coding the glucocorticoid receptor, its trans-activator spindle and kinetochore-associated protein 2 (SKA2), and its co-chaperon FKBP prolyl isomerase 5 (FKBP5), between a cohort of young adults first seen at the Hadassah Emergency Department (ED) after surviving a suicide bombing terror attack during childhood, and followed longitudinally over the years, and matched healthy controls not exposed to life threatening trauma. While significant reductions in mononuclear cell gene expression levels were observed among young adults for all three transcripts following early trauma exposure, the development of subsequent PTSD beyond trauma exposure, accounted for a small but significant portion of the variance in each of the three transcripts. Long-term perturbation in the expression of immune cell glucocorticoid response transcripts persists among young adults who develop PTSD following life threatening trauma exposure in childhood, denoting chronic dysregulation of immune stress reactivity.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Suicídio , Humanos , Adulto Jovem , Proteínas Cromossômicas não Histona , Glucocorticoides , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/metabolismo , Criança
11.
Brain Behav Immun ; 114: 360-370, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37689277

RESUMO

Posttraumatic stress disorder (PTSD) occurs in some people following exposure to a terrifying or catastrophic event involving actual/threatened death, serious injury, or sexual violence. PTSD is a common and debilitating mental disorder that imposes a significant burden on individuals, their families, health services, and society. Moreover, PTSD is a risk factor for chronic diseases such as coronary heart disease, stroke, diabetes, as well as premature mortality. Furthermore, PTSD is associated with dysregulated immune function. Despite the high prevalence of PTSD, the mechanisms underlying its etiology and manifestations remain poorly understood. Compelling evidence indicates that the human gut microbiome, a complex community of microorganisms living in the gastrointestinal tract, plays a crucial role in the development and function of the host nervous system, complex behaviors, and brain circuits. The gut microbiome may contribute to PTSD by influencing inflammation, stress responses, and neurotransmitter signaling, while bidirectional communication between the gut and brain involves mechanisms such as microbial metabolites, immune system activation, and the vagus nerve. In this literature review, we summarize recent findings on the role of the gut microbiome in PTSD in both human and animal studies. We discuss the methodological limitations of existing studies and suggest future research directions to further understand the role of the gut microbiome in PTSD.


Assuntos
Microbioma Gastrointestinal , Transtornos de Estresse Pós-Traumáticos , Animais , Humanos , Transtornos de Estresse Pós-Traumáticos/metabolismo , Microbioma Gastrointestinal/fisiologia , Encéfalo/metabolismo , Sistema Nervoso Central , Fatores de Risco
12.
Neuropharmacology ; 240: 109728, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742716

RESUMO

Post-traumatic stress disorder (PTSD) is a complex mental disorder, closely associated with stress and traumatic events. Salidroside (Sal) has been reported to possess neuroprotective effects. However, the behavioral effects and mechanisms of Sal on PTSD remain unknown. In this study, we utilized a rat model of PTSD induced by single prolonged stress (SPS) and administered Sal intraperitoneally (25, 50, 75 mg/kg/d) for 14 days. We then examined the behavioral effects and underlying mechanisms of Sal on SPS-induced PTSD rats. Our findings demonstrated that Sal alleviated anxiety-like behavior and spatial learning and memory impairment in SPS-induced PTSD rats. Furthermore, Sal treatment preserved the histomorphology of the hippocampal region. It was observed that Sal protected against hippocampal neuronal apoptosis in PTSD rats by reducing the number of TUNEL-positive cells and modulating apoptosis-related proteins (Bcl-2 and Bax). Additionally, Sal inhibited the activation of the NF-κB/iNOS/COX-2 signaling pathway in the hippocampus of PTSD rats, thereby suppressing the release of inflammatory factors (TNF-α and IL-1ß) and the activation of microglia. Notably, Sal increased the expression of synapse-associated proteins PSD95 and Synapsin I in the hippocampus, while also enhancing dendritic density in the region. In conclusion, our results demonstrated that Sal could attenuate SPS-induced PTSD-like behaviors by inhibiting hippocampal neuronal apoptosis, enhancing hippocampal synaptic plasticity, and reducing neuroinflammatory responses. These findings may provide a foundation for the potential clinical application of Sal in the treatment of PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Ratos , Animais , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Fenóis/farmacologia , Fenóis/uso terapêutico , Hipocampo/metabolismo , Modelos Animais de Doenças
13.
Brain Res Bull ; 202: 110734, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586426

RESUMO

Abnormalities in hippocampal synaptic plasticity contribute to the pathogenesis of post-traumatic stress disorder (PTSD). The Wnt/ß-catenin signaling pathway is critical for the regulation of synaptic plasticity. PTSD symptoms can be alleviated by correcting impaired neural plasticity in the hippocampus (Hipp). Electroacupuncture (EA) has a therapeutic effect by relieving PTSD-like behaviors. However, little is known about whether the Wnt/ß-catenin pathway is involved in EA-mediated improvements of PTSD symptoms. In this study, we found that enhanced single prolonged stress (ESPS)-induced PTSD led to abnormal neural plasticity, characterized by the decline of dendritic spines, the expression of postsynaptic density 95 (PSD95), and synaptophysin (Syn) in the stressed Hipp along with the reduction of Wnt3a and ß-catenin, and increased GSK-3ß. EA significantly alleviated PTSD-like behaviors, as assessed by the open field test, elevated platform maze test and conditioning fear test. This was paralleled by correcting abnormal neural plasticity by promoting the expression of PSD95 and Syn, as well as the number of dendritic spines in the Hipp. Importantly, EA exerted anti-PTSD effects by augmenting the expression levels of Wnt3a and ß-catenin, and decreasing that of GSK-3ß. The effects mediated by EA were abolished by XAV939, an inhibitor of the Wnt/ß-catenin pathway. This suggests that EA relieved ESPS-induced PTSD-like behaviors, which can largely be ascribed to impaired neural plasticity in the Hipp. These findings provide new insights into possible mechanisms linking neural plasticity in the Hipp as potential novel targets for PTSD treatment in EA therapy.


Assuntos
Eletroacupuntura , Transtornos de Estresse Pós-Traumáticos , Animais , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Transtornos de Estresse Pós-Traumáticos/terapia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Camundongos
14.
Brain Res Bull ; 200: 110697, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392896

RESUMO

RATIONALE: Post-traumatic stress disorder (PTSD) is a complex, chronic psychiatric disorder typically triggered by life-threatening events and, as yet, lacks a specialized pharmacological treatment. The potential therapeutic role of ketamine, an N-methyl-D-aspartate receptor antagonist, in mitigating PTSD has been the subject of investigation. OBJECTIVE: The aim of this study was to elucidate alterations in the glycogen synthase kinase-3ß (GSK-3ß) signaling pathway in response to ketamine intervention, using the single prolonged stress (SPS) model of PTSD at a molecular level. METHODS: PTSD-like symptoms were simulated using the SPS model. Ketamine (10 mg/kg) and GSK-3ß antagonist SB216763 (5 mg/kg) were then administered intraperitoneally. Stress-related behavior was evaluated through the open field test (OFT) and the elevated plus maze test (EMPT). Additionally, brain activity was analyzed using quantitative electroencephalography (qEEG). Changes in protein and mRNA expressions of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF), GSK-3ß, phosphorylated ser-9 GSK-3ß (p-GSK-3ß), FK506 binding protein 5 (FKBP5), and corticotropin-releasing hormone (CRH) were assessed in the hypothalamus via western blot and qPCR. RESULTS: SPS-exposed rats exhibited reduced distance and time spent in the center of the open arms, a pattern divergent from control rats. qEEG readings revealed SPS-induced increases in alpha power, low gamma and high gamma power. Furthermore, SPS triggered an upregulation in the protein and gene expression of GSK-3ß, GR, BDNF, p-GSK-3ß, and FKBP5, and downregulated CRH expression in the hypothalamus. Ketamine administration following the SPS procedure counteracted these changes by increasing the time spent in the center of the OFT, the distance traversed in the open arms of the EMPT, and mitigating SPS-induced alterations in cerebral cortex oscillations. Moreover, ketamine reduced the protein levels of GSK-3ß, GR, p-GSK-3ß, and altered the ratio of p-GSK-3ß to GSK-3ß. Gene expression of GSK-3ß, GR, BDNF, and FKBP5 decreased in the SPS-Ket group compared to the SPS-Sal group. CONCLUSIONS: Ketamine appeared to remediate the abnormal GSK-3ß signaling pathway induced by SPS. These findings collectively suggest that ketamine could be a promising therapeutic agent for PTSD symptoms, working through the modulation of the GSK-3ß signaling pathway.


Assuntos
Ketamina , Transtornos de Estresse Pós-Traumáticos , Ratos , Animais , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Roedores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ketamina/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais , Hormônio Liberador da Corticotropina
15.
Behav Brain Res ; 452: 114579, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37451551

RESUMO

The incidence of post traumatic stress disorder (PTSD) is greater in women than men, but mechanisms via which this difference manifests remain under explored. The single prolonged stress (SPS) rodent model of traumatic stress has been used to identify mechanisms through which traumatic stress leads to deficits in retaining extinction (a core PTSD symptom), but has been mostly utilized in male model systems. Recent studies have observed that SPS leads to changes in persistent fear memory in female rats, though these results are variable. This variability could be driven by changes in behavioral strategy in females during extinction, but this possibility has not been sufficiently explored. To address this, we examined the impact of SPS on freezing and avoidance (a core PTSD symptom) during extinction in male and female rats. In male rats, SPS enhanced acquisition of conditioned freezing, but did not enhance freezing during extinction training or testing. SPS also decreased avoidance during extinction training, but not extinction testing. In female rats, SPS had no impact on conditioned freezing. Avoidance was not observed in control rats, but emerged in SPS/female rats during extinction testing. Furthermore, avoidance was negatively correlated with freezing in female rats (high avoidance associated with lower freezing), but this relationship was disrupted with SPS. The results suggest that introducing avoidance during extinction negates SPS effects on extinction retention in male and female rats, control/female rats engage in avoidance to regulate fear expression, and this relationship is disrupted with SPS.


Assuntos
Extinção Psicológica , Transtornos de Estresse Pós-Traumáticos , Ratos , Feminino , Masculino , Animais , Extinção Psicológica/fisiologia , Ratos Sprague-Dawley , Medo/fisiologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Modelos Animais de Doenças , Estresse Psicológico/metabolismo
16.
Brain Behav Immun ; 113: 303-316, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516387

RESUMO

Metabolomics, proteomics and DNA methylome assays, when done in tandem from the same blood sample and analyzed together, offer an opportunity to evaluate the molecular basis of post-traumatic stress disorder (PTSD) course and pathogenesis. We performed separate metabolomics, proteomics, and DNA methylome assays on blood samples from two well-characterized cohorts of 159 active duty male participants with relatively recent onset PTSD (<1.5 years) and 300 male veterans with chronic PTSD (>7 years). Analyses of the multi-omics datasets from these two independent cohorts were used to identify convergent and distinct molecular profiles that might constitute potential signatures of severity and progression of PTSD and its comorbid conditions. Molecular signatures indicative of homeostatic processes such as signaling and metabolic pathways involved in cellular remodeling, neurogenesis, molecular safeguards against oxidative stress, metabolism of polyunsaturated fatty acids, regulation of normal immune response, post-transcriptional regulation, cellular maintenance and markers of longevity were significantly activated in the active duty participants with recent PTSD. In contrast, we observed significantly altered multimodal molecular signatures associated with chronic inflammation, neurodegeneration, cardiovascular and metabolic disorders, and cellular attritions in the veterans with chronic PTSD. Activation status of signaling and metabolic pathways at the early and late timepoints of PTSD demonstrated the differential molecular changes related to homeostatic processes at its recent and multi-system syndromes at its chronic phase. Molecular alterations in the recent PTSD seem to indicate some sort of recalibration or compensatory response, possibly directed in mitigating the pathological trajectory of the disorder.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Masculino , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/metabolismo , Epigenômica , Proteômica , Metabolômica
17.
J Am Soc Mass Spectrom ; 34(8): 1549-1558, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37405781

RESUMO

Traumatic stress triggers or exacerbates multiple psychiatric illnesses, including post-traumatic stress disorder (PTSD). Nevertheless, the neurophysiological mechanisms underlying stress-induced pathology remain unclear, in part due to the limited understanding of neuronal signaling molecules, such as neuropeptides, in this process. Here, we developed mass spectrometry (MS)-based qualitative and quantitative analytical strategies to profile neuropeptides in rats exposed to predator odor (an ethologically relevant analogue of trauma-like stress) versus control subjects (no odor) to determine peptidomic alterations induced by trauma. In total, 628 unique neuropeptides were identified across 5 fear-circuitry-related brain regions. Brain-region-specific changes of several neuropeptide families, including granin, ProSAAS, opioids, cholecystokinin, and tachykinin, were also observed in the stressed group. Neuropeptides from the same protein precursor were found to vary across different brain regions, indicating the site-specific effects of predator stress. This study reveals for the first time the interaction between neuropeptides and traumatic stress, providing insights into the molecular mechanisms of stress-induced psychopathology and suggesting putative novel therapeutic strategies for disorders such as PTSD.


Assuntos
Neuropeptídeos , Transtornos de Estresse Pós-Traumáticos , Ratos , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/psicologia , Encéfalo/metabolismo , Neuropeptídeos/metabolismo
18.
Biochem Biophys Res Commun ; 671: 166-172, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37302291

RESUMO

Growing evidence suggest that NLRP3 inflammasome activation in hippocampus and amygdala is involved in the pathophysiology of PTSD. Our previous studies have demonstrated that apoptosis of dorsal raphe nucleus (DRN) contributes to the pathological progression of PTSD. Recent studies by others have shown that in brain injury sodium aescinate (SA) has a protective effect on neurons by inhibiting inflammatory response pathways, thereby relieving symptoms. Here, we extend the therapeutic effects of SA to PTSD rats. We found that PTSD was associated with significant activation of the NLRP3 inflammasome in DRN, whereas administration of SA significantly inhibited DRN NLRP3 inflammasome activation and reduced DRN apoptosis level. SA also improved learning and memory ability and reduced anxiety and depression level in PTSD rats. In addition, NLRP3 inflammasome activation in DRN of PTSD rats impaired mitochondria function by inhibiting ATP synthesis and increasing ROS production, whereas SA can effectively reverse the pathological progression of mitochondria. We recommend SA as a new candidate for the pharmacological treatment of PTSD.


Assuntos
Núcleo Dorsal da Rafe , Transtornos de Estresse Pós-Traumáticos , Ratos , Animais , Inflamassomos/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
19.
J Neuroimmune Pharmacol ; 18(3): 248-266, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37097603

RESUMO

Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Ciclo-Oxigenase 2 , Dinoprostona/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
20.
Mol Neurobiol ; 60(7): 3963-3978, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004607

RESUMO

Post-traumatic stress disorder (PTSD), gaining increasing attention, is a multifaceted psychiatric disorder that occurs following a stressful or traumatic event or series of events. Recently, several studies showed a close relationship between PTSD and neuroinflammation. Neuroinflammation, a defense response of the nervous system, is associated with the activation of neuroimmune cells such as microglia and astrocytes and with changes in inflammatory markers. In this review, we first analyzed the relationship between neuroinflammation and PTSD: the effect of stress-derived activation of the hypothalamic-pituitary-adrenal (HPA) axis on the main immune cells in the brain and the effect of stimulated immune cells in the brain on the HPA axis. We then summarize the alteration of inflammatory markers in brain regions related to PTSD. Astrocytes are neural parenchymal cells that protect neurons by regulating the ionic microenvironment around neurons. Microglia are macrophages of the brain that coordinate the immunological response. Recent studies on these two cell types provided new insight into neuroinflammation in PTSD. These contribute to promoting comprehension of neuroinflammation, which plays a pivotal role in the pathogenesis of PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/metabolismo , Doenças Neuroinflamatórias , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...